David Blume commited on 2018-01-20 20:49:06
Showing 1 changed files, with 186 additions and 0 deletions.
... | ... |
@@ -0,0 +1,186 @@ |
1 |
+#!/usr/bin/env python |
|
2 |
+ |
|
3 |
+import yaml |
|
4 |
+import sys |
|
5 |
+import os |
|
6 |
+import time |
|
7 |
+import traceback |
|
8 |
+import exceptions |
|
9 |
+import math |
|
10 |
+import bisect |
|
11 |
+ |
|
12 |
+debug = True |
|
13 |
+ |
|
14 |
+ |
|
15 |
+def get_standard_deviation(l): |
|
16 |
+ """ returns the standard deviation of the iterable l """ |
|
17 |
+ mean = sum(l) / len(l) |
|
18 |
+ squares_of_diffs = map(lambda x: pow(x - mean, 2), l) |
|
19 |
+ mean_of_squares = sum(squares_of_diffs) / len(squares_of_diffs) |
|
20 |
+ return math.sqrt(mean_of_squares) |
|
21 |
+ |
|
22 |
+ |
|
23 |
+def unique(seq, idfun=None): |
|
24 |
+ if idfun is None: |
|
25 |
+ def idfun(x): return x |
|
26 |
+ seen = {} |
|
27 |
+ result = [] |
|
28 |
+ for item in seq: |
|
29 |
+ marker = idfun(item) |
|
30 |
+ if marker in seen: continue |
|
31 |
+ seen[marker] = 1 |
|
32 |
+ result.append(item) |
|
33 |
+ return result |
|
34 |
+ |
|
35 |
+ |
|
36 |
+def Process_comments_for_feed(yaml_items): |
|
37 |
+ time_blocks = [[], [], [], [], [], [], [], []] |
|
38 |
+ for i in yaml_items: |
|
39 |
+ time_posted = i['orig_posted'] |
|
40 |
+ comment_times = i['comment_times'] |
|
41 |
+ comments = i['comments'] |
|
42 |
+ comment_times_indices = [(t - time_posted) / 1800 for t in comment_times] |
|
43 |
+ for j in range(len(comments)): |
|
44 |
+ if comment_times_indices[j] > 7 or comment_times_indices[j] < 0: |
|
45 |
+ continue |
|
46 |
+ time_blocks[comment_times_indices[j]].append(comments[j]) |
|
47 |
+ |
|
48 |
+ stats = [] |
|
49 |
+ for time_block in time_blocks: |
|
50 |
+ mean = sum(time_block) / len(time_block) |
|
51 |
+ squares_of_diffs = map(lambda x: pow(x - mean, 2), time_block) |
|
52 |
+ mean_of_squares = sum(squares_of_diffs) / len(squares_of_diffs) |
|
53 |
+ std_dev = math.sqrt(mean_of_squares) |
|
54 |
+ stats.append((mean, std_dev)) |
|
55 |
+ return stats |
|
56 |
+ |
|
57 |
+ |
|
58 |
+def Remove_outliers(time_blocks): |
|
59 |
+ """remove 6% of the values as outliers (3% from each side).""" |
|
60 |
+ for block in time_blocks: |
|
61 |
+ pairs_to_remove = 0 |
|
62 |
+ if len(block) > 66: |
|
63 |
+ pairs_to_remove = int(len(block) * 0.03) |
|
64 |
+ elif len(block) > 19: |
|
65 |
+ pairs_to_remove = 1 |
|
66 |
+ |
|
67 |
+ while pairs_to_remove > 0: |
|
68 |
+ block.pop() |
|
69 |
+ block.pop(0) |
|
70 |
+ pairs_to_remove -= 1 |
|
71 |
+ |
|
72 |
+ |
|
73 |
+def Calculate_median_mean_stddev(time_blocks): |
|
74 |
+ stats = [] |
|
75 |
+ for block in time_blocks: |
|
76 |
+ # Calculate the median |
|
77 |
+ count = len(block) |
|
78 |
+ median = 0.0 |
|
79 |
+ if count % 2: |
|
80 |
+ median = float(block[count/2]) |
|
81 |
+ elif count > 0: |
|
82 |
+ median = (block[count / 2 - 1] + block[count / 2]) / 2.0 |
|
83 |
+ |
|
84 |
+ # Calculate the mean and standard deviation |
|
85 |
+ if count > 0: |
|
86 |
+ mean = sum(block) / float(len(block)) |
|
87 |
+ squares_of_diffs = map(lambda x: pow(x - mean, 2), block) |
|
88 |
+ mean_of_squares = sum(squares_of_diffs) / len(squares_of_diffs) |
|
89 |
+ else: |
|
90 |
+ mean = 0 |
|
91 |
+ mean_of_squares = 0 |
|
92 |
+ std_dev = math.sqrt(mean_of_squares) |
|
93 |
+ stats.append((median, mean, std_dev)) |
|
94 |
+ return stats |
|
95 |
+ |
|
96 |
+ |
|
97 |
+def Process_feed(yaml_items, metric, metric_times): |
|
98 |
+ weekend_time_blocks = [[], [], [], [], [], [], [], []] |
|
99 |
+ weekday_time_blocks = [[], [], [], [], [], [], [], []] |
|
100 |
+ for i in yaml_items: |
|
101 |
+ time_posted = i['orig_posted'] |
|
102 |
+ wday = time.localtime(time_posted).tm_wday |
|
103 |
+ value_times = i[metric_times] |
|
104 |
+ values = i[metric] |
|
105 |
+ value_times_indices = [(t - time_posted) / 1800 for t in value_times] |
|
106 |
+ for j in range(len(values)): |
|
107 |
+ if value_times_indices[j] > 7 or value_times_indices[j] < 0: |
|
108 |
+ continue |
|
109 |
+ if wday == 5 or wday == 6: |
|
110 |
+ bisect.insort(weekend_time_blocks[value_times_indices[j]], values[j]) |
|
111 |
+ else: |
|
112 |
+ bisect.insort(weekday_time_blocks[value_times_indices[j]], values[j]) |
|
113 |
+ |
|
114 |
+ Remove_outliers(weekend_time_blocks) |
|
115 |
+ Remove_outliers(weekday_time_blocks) |
|
116 |
+ |
|
117 |
+ weekend_stats = Calculate_median_mean_stddev(weekend_time_blocks) |
|
118 |
+ weekday_stats = Calculate_median_mean_stddev(weekday_time_blocks) |
|
119 |
+ |
|
120 |
+ return weekend_stats, weekday_stats |
|
121 |
+ |
|
122 |
+ |
|
123 |
+if __name__=='__main__': |
|
124 |
+ start_time = time.time() |
|
125 |
+ progress_text = [] |
|
126 |
+ |
|
127 |
+ try: |
|
128 |
+ localdir = os.path.abspath(os.path.dirname(sys.argv[0])) |
|
129 |
+ # |
|
130 |
+ # Read in techcrunch.yaml |
|
131 |
+ # |
|
132 |
+ # [ { 'title' : 'Title Text', |
|
133 |
+ # 'link' : u'http://techcrunch.com/2010/08/17/google-buzz-who-to-follow/', |
|
134 |
+ # 'author' : u'MG Siegler', |
|
135 |
+ # 'orig_posted' : 1282197199 |
|
136 |
+ # 'tags' : [ u'Google', u'privacy' ] |
|
137 |
+ # 'qualified' : -1 |
|
138 |
+ # 'comment_times' : [ 1282197199, 1282197407 ] |
|
139 |
+ # 'comments' : [ 0, 15 ] |
|
140 |
+ # 'slash_comment_times' : [ 1282197199, 1282197407 ] |
|
141 |
+ # 'slash_comments' : [ 0, 5 ] |
|
142 |
+ # 'slash_comment_times' : [ 1282197199, 1282197407 ] |
|
143 |
+ # 'slash_comments' : [ 0, 3 ] |
|
144 |
+ # 'retweet_times' : [ 1282197199, 1282197407 ] |
|
145 |
+ # 'retweets' : [ 0, 43 ] |
|
146 |
+ # }, |
|
147 |
+ # { ... } |
|
148 |
+ # ] |
|
149 |
+ # |
|
150 |
+ yaml_fullpath = os.path.join(localdir, 'techcrunch.yaml') |
|
151 |
+ if os.path.exists(yaml_fullpath): |
|
152 |
+ f = file(yaml_fullpath, 'rb') |
|
153 |
+ items = yaml.load(f) |
|
154 |
+ f.close() |
|
155 |
+ else: |
|
156 |
+ print "could not open", yaml_fullpath |
|
157 |
+ items = [] |
|
158 |
+ |
|
159 |
+ weekend_stats, weekday_stats = Process_feed(items, 'fb_shares', 'comment_times') |
|
160 |
+ |
|
161 |
+ # We'll only look at the stats for the time 1:00 to 1:30 after posting. |
|
162 |
+ weekend_median, weekend_mean, weekend_sigma = weekend_stats[2] |
|
163 |
+ weekend_threshold = weekend_median + (weekend_sigma) |
|
164 |
+ median, mean, sigma = weekday_stats[2] |
|
165 |
+ threshold = median + (sigma) |
|
166 |
+ print "Weekend Median=%1.1f, Mean=%1.1f, Sigma=%1.1f --> Threshold = %1.1f" % (weekend_median, weekend_mean, weekend_sigma, weekend_threshold) |
|
167 |
+ print "Weekday Median=%1.1f, Mean=%1.1f, Sigma=%1.1f --> Threshold = %1.1f" % (median, mean, sigma, threshold) |
|
168 |
+ for item in items: |
|
169 |
+ if item['qualified'] == -1: |
|
170 |
+ print "Processing", item['title'].encode('ascii', 'replace') |
|
171 |
+ for i in range(len(item['retweet_times'])): |
|
172 |
+ r_time = item['retweet_times'][i] |
|
173 |
+ if r_time - item['orig_posted'] < 5400: |
|
174 |
+ print "Time %1.1f = %d" % ((r_time - item['orig_posted']) / 1800.0, item['retweets'][i]), |
|
175 |
+ if item['retweets'][i] >= threshold: |
|
176 |
+ item['qualified'] = i |
|
177 |
+ print "NOW QUALIFIES", |
|
178 |
+ if r_time - item['orig_posted'] >= 3600: |
|
179 |
+ break |
|
180 |
|
|
181 |
+ |
|
182 |
+ except Exception as e: |
|
183 |
+ exceptional_text = "An exception occurred: " + str(e.__class__) + " " + str(e) |
|
184 |
+ print exceptional_text, ' '.join(progress_text) |
|
185 |
+ traceback.print_exc(file=sys.stdout) |
|
186 |
+ |
|
0 | 187 |